Path Planning And Trajectory Control Of Collaborative Mobile Robots Using Hybrid Control Architecture
نویسندگان
چکیده
This paper presents the development and implementation a hybrid control architecture to direct a collective of three X80 mobile robots to multiple user-defined waypoints. The Genetic Algorithm Path Planner created an optimized, reduction in the time to complete the task, path plan for each robot in the collective such that each waypoint was visited once without colliding with a priori obstacles. The deliberative Genetic Algorithm Path Planner was then coupled with a reactive Potential Field Trajectory Planner and kinematic based controller to create a hybrid control architecture allowing the mobile robot to navigate between multiple user-defined waypoints, while avoiding a priori obstacles and obstacles detected using the robots’ range sensors. The success of this hybrid control architecture was proven through simulation and experimentation using three of Dr. Robot’s TM wireless X80 mobile robots.
منابع مشابه
Formation Control and Path Planning of Two Robots for Tracking a Moving Target
This paper addresses the dynamic path planning for two mobile robots in unknownenvironment with obstacle avoidance and moving target tracking. These robots must form atriangle with moving target. The algorithm is composed of two parts. The first part of thealgorithm used for formation planning of the robots and a moving target. It generates thedesired position for the robots for the next step. ...
متن کاملTrajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On Computational Model of KHEPERA IV
This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. The purpose of control is to track a predefined reference trajectory with the best po...
متن کاملDelay Compensation on Fuzzy Trajectory Tracking Control of Omni-Directional Mobile Robots
This paper presents a delay compensator fuzzy control for trajectory tracking of omni-directional mobile robots. Fuzzy logic control (FLC) of the robots is a suitable strategy for dealing with model uncertainties, nonlinearities and disturbances. On the other hand, in many robotic applications such as mobile robots, delay phenomenon is able to substantially deteriorate the behavior of system's...
متن کاملA Hybrid System Simulation for Formation Control of Wheeled Mobile Robots:An Application of Artificial Potential Field and Kinematic Controller
This paper proposes a novel hybrid formation control technique for a group of differentially driven wheeled mobile robots in the Leader-Follower framework. In the proposed method, the leader robot of the group plans its path of navigation by an artificial potential field and the follower robots plan their path in order to follow the leader robot by maintaining a particular formation employing t...
متن کاملPerformance-Based Rough Terrain Navigation for Nonholonomic Mobile Robots
This paper addresses path planning and control of mobile robots in rough terrain environments. Previous research separates path planning and control into two different problems and addresses them in different contexts. Instead, we formulate these issues in connected modules with performance requirement considerations in each module. We advocate the idea that by incorporating criterion-optimizin...
متن کامل